TR-2012007: Solving Linear Systems of Equations with Randomization, Augmentation and Aggregation II

نویسندگان

  • Victor Y. Pan
  • Guoliang Qian
چکیده

Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix we apply randomization, augmentation, and aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization, preserve matrix structure and sparseness, and in the case of an ill conditioned input perform only a small part of the computations with high accuracy. We extend the algorithms to the solution of nonhomogeneous nonsingular ill conditioned linear systems of equations whose matrices have small numerical nullities. Our estimates and experiments show dramatic progress versus the customary matrix algorithms where the input matrices are rank deficient or ill conditioned. Our study can be of independent technical interest: we extend the known results on conditioning of random matrices to randomized preconditioning, estimate the condition numbers of randomly augmented matrices, and link augmentation to aggregation as well as homogeneous to nonhomogeneous linear systems of equations. AMS Classification: 15A06, 15A12, 15A52, 65F22, 65F05, 65F10

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TR-2012004: Solving Linear Systems of Equations with Randomization, Augmentation and Aggregation

Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix we apply randomization, augmentation, and aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization, preserve matrix structure and sparseness, and in the case of an ill conditioned input perform only a sm...

متن کامل

Solving Linear Systems of Equations with Randomizaion, Augmentation and Aggregation

Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix we apply randomization, augmentation, and aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization, preserve matrix structure and sparseness, and in the case of an ill conditioned input perform only a sm...

متن کامل

Solving Linear Systems of Equations

Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix we apply randomization, augmentation, and aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization, preserve matrix structure and sparseness, and in the case of an ill conditioned input perform only a sm...

متن کامل

TR-2011009: Solving Linear Systems of Equations with Randomized Augmentation and Aggregation

Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix A we combine scaled randomized augmentation with aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization and preserve matrix structure and sparseness. In the case of ill conditioned inputs we perform a ...

متن کامل

TR-2010009: Solving Linear Systems with Randomized Augmentation II

With a high probablilty our randomized augmentation of a matrix eliminates its rank deficiency and ill conditioning. Our techniques avoid various drawbacks of the customary algorithms based on pivoting and orthogonalization, e.g., we readily preserve matrix structure and sparseness. Furthermore our randomized augmentation is expected to precondition quite a general class of ill conditioned inpu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016