TR-2012007: Solving Linear Systems of Equations with Randomization, Augmentation and Aggregation II
نویسندگان
چکیده
Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix we apply randomization, augmentation, and aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization, preserve matrix structure and sparseness, and in the case of an ill conditioned input perform only a small part of the computations with high accuracy. We extend the algorithms to the solution of nonhomogeneous nonsingular ill conditioned linear systems of equations whose matrices have small numerical nullities. Our estimates and experiments show dramatic progress versus the customary matrix algorithms where the input matrices are rank deficient or ill conditioned. Our study can be of independent technical interest: we extend the known results on conditioning of random matrices to randomized preconditioning, estimate the condition numbers of randomly augmented matrices, and link augmentation to aggregation as well as homogeneous to nonhomogeneous linear systems of equations. AMS Classification: 15A06, 15A12, 15A52, 65F22, 65F05, 65F10
منابع مشابه
TR-2012004: Solving Linear Systems of Equations with Randomization, Augmentation and Aggregation
Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix we apply randomization, augmentation, and aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization, preserve matrix structure and sparseness, and in the case of an ill conditioned input perform only a sm...
متن کاملSolving Linear Systems of Equations with Randomizaion, Augmentation and Aggregation
Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix we apply randomization, augmentation, and aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization, preserve matrix structure and sparseness, and in the case of an ill conditioned input perform only a sm...
متن کاملSolving Linear Systems of Equations
Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix we apply randomization, augmentation, and aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization, preserve matrix structure and sparseness, and in the case of an ill conditioned input perform only a sm...
متن کاملTR-2011009: Solving Linear Systems of Equations with Randomized Augmentation and Aggregation
Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix A we combine scaled randomized augmentation with aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization and preserve matrix structure and sparseness. In the case of ill conditioned inputs we perform a ...
متن کاملTR-2010009: Solving Linear Systems with Randomized Augmentation II
With a high probablilty our randomized augmentation of a matrix eliminates its rank deficiency and ill conditioning. Our techniques avoid various drawbacks of the customary algorithms based on pivoting and orthogonalization, e.g., we readily preserve matrix structure and sparseness. Furthermore our randomized augmentation is expected to precondition quite a general class of ill conditioned inpu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016